Towards generic relation extraction

نویسنده

  • Benjamin Hachey
چکیده

A vast amount of usable electronic data is in the form of unstructured text. The relation extraction task aims to identify useful information in text (e.g., PersonW works for OrganisationX, GeneY encodes ProteinZ) and recode it in a format such as a relational database that can be more effectively used for querying and automated reasoning. However, adapting conventional relation extraction systems to new domains or tasks requires significant effort from annotators and developers. Furthermore, previous adaptation approaches based on bootstrapping start from example instances of the target relations, thus requiring that the correct relation type schema be known in advance. Generic relation extraction (GRE) addresses the adaptation problem by applying generic techniques that achieve comparable accuracy when transferred, without modification of model parameters, across domains and tasks. Previous work on GRE has relied extensively on various lexical and shallow syntactic indicators. I present new state-of-the-art models for GRE that incorporate governordependency information. I also introduce a dimensionality reduction step into the GRE relation characterisation sub-task, which serves to capture latent semantic information and leads to significant improvements over an unreduced model. Comparison of dimensionality reduction techniques suggests that latent Dirichlet allocation (LDA) – a probabilistic generative approach – successfully incorporates a larger and more interdependent feature set than a model based on singular value decomposition (SVD) and performs as well as or better than SVD on all experimental settings. Finally, I will introduce multi-document summarisation as an extrinsic test bed for GRE and present results which demonstrate that the relative performance of GRE models is consistent across tasks and that the GRE-based representation leads to significant improvements over a standard baseline from the literature. Taken together, the experimental results 1) show that GRE can be improved using dependency parsing and dimensionality reduction, 2) demonstrate the utility of GRE for the content selection step of extractive summarisation and 3) validate the GRE claim of modification-free adaptation for the first time with respect to both domain and task. This thesis also introduces data sets derived from publicly available corpora for the purpose of rigorous intrinsic evaluation in the news and biomedical domains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards a Structured Representation of Generic Concepts and Relations in Large Text Corpora

Extraction of structured information from text corpora involves identifying entities and the relationship between entities expressed in unstructured text. We propose a novel iterative pattern induction method to extract relation tuples exploiting lexical and shallow syntactic pattern of a sentence. We start with a single pattern to illustrate how the method explores additional paterns and tuple...

متن کامل

Expanding The Recall Of Relation Extraction By Bootstrapping

Most works on relation extraction assume considerable human effort for making an annotated corpus or for knowledge engineering. Generic patterns employed in KnowItAll achieve unsupervised, highprecision extraction, but often result in low recall. This paper compares two bootstrapping methods to expand recall that start with automatically extracted seeds by KnowItAll. The first method is string ...

متن کامل

Multi-Document Summarisation Using Generic Relation Extraction

Experiments are reported that investigate the effect of various source document representations on the accuracy of the sentence extraction phase of a multidocument summarisation task. A novel representation is introduced based on generic relation extraction (GRE), which aims to build systems for relation identification and characterisation that can be transferred across domains and tasks withou...

متن کامل

A Weakly-Supervised Rule-Based Approach for Relation Extraction

Resumen Rule-based approaches for information extraction usually achieve good precision values, even if they often need a lot of manual effort to be implemented. In this paper, we present a novel rule-based strategy for semantic relation extraction that takes advantage of partial syntactic parsing in order to simplify the linguistic structures containing instances of semantic relations. We also...

متن کامل

Investigating a Generic Paraphrase-Based Approach for Relation Extraction

Unsupervised paraphrase acquisition has been an active research field in recent years, but its effective coverage and performance have rarely been evaluated. We propose a generic paraphrase-based approach for Relation Extraction (RE), aiming at a dual goal: obtaining an applicative evaluation scheme for paraphrase acquisition and obtaining a generic and largely unsupervised configuration for RE...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009